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In the microscopic world, physical systems are significantly more sensitive to individual interac-
tions than macroscopic ones. Microparticles tend to follow a diffusive motion rather than a ballistic
motion, making it harder to predict the dynamics of a system. Here we explore the validity of using
computer simulations to substitute real physical systems and predict their dynamical properties
using mathematical and probabilistic tools. We explore flexible polymers in solution and particles
undergoing Brownian motion in a one-dimensional medium and show that the systems can be safely
approximated by numerical methods involving the generation of random numbers. We show that
the anisotropy of flexible polymers’ shapes is mostly due to the random walk nature of the system
and not due to intramolecular interactions or self-avoiding effects. We show that the Langevine
equation can be used to predict the trajectory of a Brownian particle while ignoring the inertial
term, and that a Monte Carlo algorithm can be used to describe more precisely and at a cheaper
cost the properties of an equilibrated system.

INTRODUCTION

Often when studying macroscopic systems their behav-
ior is, within a certain degree of uncertainty, defined by a
ballistic motion. We can use equations to understand and
accurately predict the motion of a projectile. However,
when we look into the microscopic world, these ballis-
tic tools seem useless. At the very small scale, physical
systems tend to be characterized by a diffusive motion.
At the small scale, every small interaction becomes sig-
nificative and the sum of all interactions adds up to a
seemingly random movement. In 1905, Karl Pearson in-
troduced the term random walk. A random walk is a
mathematical tool used to approximate or simulate dif-
fusive motion. It is the continuous unitary displacement
in random directions. In this paper we exploit this math-
ematical tool in order to explore the random walk nature
of flexible polymers and particles in Brownian motion.

Our approach involves writing computer programs that
simulate two interesting systems. The first one, a flexible
polymer in solution, the second one, a spherical parti-
cle undergoing Brownian motion in one dimension. The
simulations explore the dynamics of the system and are
compared to the literature. Each of these physical sys-
tems is treated separately. Our objective, however, is
in both cases to qualitatively explore the correlation be-
tween a mathematical tool, random walks, and a real
physical system. By comparing statistical information
from the simulations to experimental results we can de-
termine the extent of the influence of random walks in
our microscopic systems.

RANDOM WALKS IN FLEXIBLE POLYMERS

A random walk displacement is characterized by its
squared mean displacement being proportional to the
square root of the number of steps, 〈x2〉 ∝

√
N , where N

FIG. 1: Simulation results for 10 flexible polymers
consisting of 1000 monomers each. The simulations are
completely dependent on a pseudo-random generator.

The polymers exist in a two-dimensional space.

is the number of steps. We shall see this relationship later
on on the characterization of the polymers. In generating
polymers of length N, we generate a random number θi,
where 0 ≤ θi ≤ 2π for the i-th monomer, and use the
following expression sequentially

rN = ri +

N∑
i=2

(cos θi, sin θi) (1)

We generated 10 polymers, each of N = 1000. From
Figure 1 we can observe that the polymers’ shapes differ
significantly from one to the other. However, we can
see that the polymers do not obey a spherical symmetry,
but their shapes are anisotropic. We can also see that
the length of the polymer is significantly smaller than
the length of N monomers aligned as a rod (about 10%
of the possible maximum length).

In order to characterize the shape of the polymers we
define three different measures of the polymer. The end-
to-end radius consists of the distance between the first
and last monomers of the polymer,

Ree ≡ |rN − r1| (2)
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FIG. 2: A particular polymer of length 1000 monomers,
plotted with its different shape characterizations. (a)
The end-to-end circle, (b) the gyration circle, and (c)

the gaussian ellipse.

The gyration radius is a more general measure of the
spread of the polymer, defined as

R2
g =

N∑
i=1

|rN − r1|2/N (3)

The last characterization is the gaussian ellipse of the
polymer. The two radii and the orientation of the poly-
mer are extracted from the covariance tensor

V ≡
N∑
i=1

1

N

[
(xi − x̄)2 (xi − x̄)(yi − ȳ)

(xi − x̄)(yi − ȳ) (yi − ȳ)2

]
(4)

where the eigenvectors of the matrix represent the ori-
entations of the major and minor axis of the ellipse, and
the eigenvalues are α2 and β2. The major radius of the
gaussian ellipse is α and the minor radius is β. We
will characterize the orientation of the polymer Θ, as
Θ ≡ arccosαx.

It is clear from the polymer’s shape characterizations
showed in Figure 2 for a particular flexible polymer that
the shape characterizations do not offer enough insight
by themselves. However, the statistical information re-
trieved from 1000 different polymer simulations reveal
much more interesting features of the system.

The results of generating 1000 different polymers of
1000 monomers each are presented in Figure 3. Proba-
bility Density Functions are plotted for the orientations,
major radius, minor axis, and aspect ratio of the poly-
mers. The orientations of the polymers are randomly
distributed across the whole domain, as expected. The
major and minor axis follow a gaussian distribution with
peaks at 3.0 and 2.25, respectively. The distribution of
the aspect ratio shows that all the values are above 1 and
the peak lies at around 1.6. Moreover, we define the ratio
of the average values of the radii as

(a)

(b)

(c) (d)

FIG. 3: The Probability density figures for the different
parameters of the gaussian ellipse for 1000 different

simulated polymers, each of 1000 monomers. (a)
orientations of the polymers, (b) major radius of the
ellipse α, (c) minor radius of the ellipse β, (d) aspect

ratio of the polymer, defined as α/β

γ ≡ 〈αj〉/〈βj〉 (5)

and we find that γ = 2.1, which is approximately the
same as the value of 2.2 reported by Haber et al.(1) This
results show that the shapes of the polymers are mostly
extended or elongated, with the orientations varying over
the whole space. This shows a nonspherical symmetry
of the system. The results of the computer simulations
closely follow the results obtained in experiments study-
ing flexible polymers in solutions through optical meth-
ods(1).

The results are consistent with the observations made
by Haber et al. for the case where the polymers are
1000 monomers long(1). Here we also explore the differ-
ent cases where the polymers have different lengths. We
simulate polymers for 1000 different lengths, from N = 1
to N = 1000. We generate 1000 polymers for each N
and plot 〈Ree〉, 〈Rg〉, 〈αj〉, 〈βj〉, and γ as functions of
the polymers’ length N .

The results from generating one million polymers show
two interesting results. First, we see that the end-to-end
radius, the gyration radius, and both of the radii from the
gaussian ellipse follow the expected growth for diffusive
motion. The end-to-end radius plot can be fitted to
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FIG. 4: Shape characterizations averaged over 1000
polymers and plotted as functions of the length N . (a)
Average of end-to-end radius as a function of N , 〈Ree〉,
(b) average of gyration radius as a function of N , 〈Rg〉,
(c) major radius of the ellipse 〈α〉 as a function of N ,
(d) minor radius of the ellipse 〈β〉 as a function of N ,

(e) measurements of γ as a function of N .

Ree ≈ 0.95N0.49 (6)

the gyration radius plot can be fitted to

Rg ≈ 0.43N0.48 (7)

the major radius of the ellipse to

0.39N0.48 (8)

and the minor radius of the ellipse to

0.18N0.48 (9)

This shows that all of these shape characterizations
grow approximately as the square root of the number of
steps taken, as expected in a diffusive motion system.

Second, the measurements of γ, 〈αj〉/〈βj〉, as a func-
tion of N, show almost a constant value around 2.18 show-
ing a shape anisotropy for any flexible polymer indepen-
dent of its length. The value measured by Haber et al.
is approximately 2.2, which indicate a close relationship
between our simulations and the T2-DNA chains used in
their experiments.

CONCLUSIONS

The statistical information retrieved from the simula-
tions reveals a very close relationship to real flexible poly-
mers when compared to the results obtained by Haber et
al. We conclude that the there is a predominance of
anisotropic polymer shapes and that this is due to the
random walk nature of the polymers. Our simulations
are purely mathematical and probabilistic, which suggest
that the intramolecular interactions or any self-avoiding
effects have little or no effect on the shapes or dynam-
ics of flexible polymers. The shapes characterizations of
our simulations follow closely the shape of DNA chains
in solution and the accepted models for diffusive motion.

THE RANDOM WALK NATURE OF BROWNIAN
MOTION

Now we explore Brownian motion and its relationship
with a random walk. When we consider a system con-
sisting of a spherical particle in a fluid, we think of the
fluid as the sum of many small molecules (their size be-
ing much smaller than the size of the spherical particle)
moving around. The little particles are constantly mov-
ing and colliding with the spherical particle. The result is
the fluid constantly pushing the particle from seemingly
random directions, leading to what is known as Brownian
motion.

In our simulations we consider a spherical particle of
radius a in water. As the water molecules move around
and collide with the sphere a transfer of momentum
occurs. If the change of momentum from one water
molecule collision is ∆pi, then the total change of mo-
mentum over a period of time where there occur N col-
lisions is ∆PB = ΣNi=1∆pi. Since we have the collisions
coming from random directions, the average over many
collisions should be 〈∆PB〉 ≈ 0, and the variance should
be proportional to the number of collisions N , which is
proportional to the product of the radius and the change
of time. Hence, we have

〈|∆PB |2〉 = Aa∆t (10)
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and we define the transfer rate of the momentum as

fB ≡ ∆PB/∆t (11)

It is this transfer of momentum what we call a Brown-
ian force, and as expected from all the random collisions,
it is random.

However, the resulting motion of the spherical particle
is not only due to the collision of water molecules and
the Brownian force. As the particle is pushed through
the liquid, more molecules hit the particle from one side
than the other, in an anti-parallel fashion. This results
in a drag force, fd, that we can calculate using Stoke’s
law.

fd ≡ ∆P d/∆t = −αv (12)

where α is equal to 6πηa, and η is the viscosity of the
liquid. When the Brownian force moves the particle in a
particular direction, the drag force increases in an anti-
parallel direction, the two forces are correlated, and we
find that the constant A is equal to 2d(6πη)kbT , following
Stoke’s law and d is the system’s dimension.

In our simulations we consider a particle trapped in a
potential in a single dimension, resulting in Equation 13
as the equation of motion for the particle.

m
dv

dt
= −kx− 6πηav + fB (13)

This is the Langevine equation and can be simplified
further when the Renolds number is much less than 1.
The resulting equation is

0 = −kx− 6πηav + fB (14)

and if we integrate over a ∆t we get

x(∆t) = Sx(0) +Bg (15)

where S = 1− k∆t
6πηa , B =

√
2kbT∆t

6πηa , and g is a gaussian

random number, hence 〈g〉 = 0 and 〈|g|2〉 = 1. For this
particular system we will define the correlation function
as

〈x(t)x(t′)〉 =
kBT

k
e−|τ |/τ0 (16)

Using Equation 15 we simulate the displacement of
a one-dimensional particle at room temperature (T ≈
300K) and a spring constant of k = 10pN/µm.

The plot shows the particle rapidly falling from its ini-
tial position to its final position and fluctuates around

FIG. 5: Trajectory of a spherical particle in the x-axis.
The particle is trapped in a potential and is at a room

of 300K. The spring constant is 1× 10−5N/m.

the equilibrium point. However, in order to understand
the rate of fluctuations within the system we define the
fluctuation width as

w = 2
√
〈x2〉 (17)

In order to interpret this measurement, we can com-
pare the calculation to the value obtained from the cor-
relation function for the system.

w = 2
√
kBT/k (18)

For the simulation plotted in Figure 5 the measured
value is w = 4.07 × 10−8m while the predicted value is
w = 4.04 × 10−8m. This suggest that ignoring the in-
ertia term in Equation 13 and ignoring any changes in
the spring force due to small time intervals does not af-
fect the predictions of the particle’s trajectory. Moreover
we extract the persistence time τ0 from the correlation
function and compare it to the predicted value,

τ0 = 6πηa/k (19)

From the simulation we obtain that τ0 = 0.00161 while
the predicted result is τ0 = 0.00155. For completeness,
we plot new trajectories for different values of the spring
constant and temperature. We then measure the fluc-
tuation width and the persistence times as functions of
spring constant k and temperature T .

The four plots from Figure 6 show that the stiffer the
spring the faster the system settles at equilibrium and
the less it fluctuates around this point. For increasing
temperatures, the system reaches equilibrium faster but
fluctuates more. The obtained and predicted values for
the different plots are presented in the Table I.
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FIG. 6: Particle trajectories for different values of the
spring constant and temperature of the system.

(a) k = 1.00× 10−5N/m and T = 300K,
(b) k = 1.00× 10−7N/m and T = 300K,
(c) k = 1.00× 10−6N/m and T = 273K,
(d) k = 1.00× 10−6N/m and T = 373K.

Moreover, after plotting the fluctuation width and the
persistence time as functions of the spring constant and
temperature, we find that both the fluctuation width and
the persistence time decay rapidly when we change the
spring constant, as shown in plots (a) and (c) of Figure
7, but the fluctuation width seems to slightly increase
linearly as the temperature of the system increases, as
shown in plot (d) of Figure 7.

Comparing to the predicted values, we find that when
increasing the spring constant the obtained values are
T = 333.16K and η = 9.45 × 10−4Pa·s, while the pre-
dicted values are 300K and 8.54× 10−4PA·s. In the case
where we increase the temperature, we obtain a value

TABLE I: Observed and predicted values for the
fluctuation width and the persistence time for the

different values of k and T plotted in Figure 6.

Plot Observed w Predicted w

(a) 4.04 × 10−7m 4.07 × 10−7m

(b) 4.12 × 10−7m 4.07 × 10−7m

(c) 1.35 × 10−7m 1.23 × 10−7m

(d) 1.39 × 10−7m 1.43 × 10−7m

Plot Observed τ0 Predicted τ0

(a) 0.00155s 0.00161s

(b) 0.167s 0.161s

(c) 0.0377s 0.0332s

(d) 0.00527s 0.00497s

(a) (b)

(c) (d)

FIG. 7: Fluctuation width and persistence time as
functions of the spring constant and temperature. (a)
Persistence time as a function of spring constant, (b)

zoom-in of plot (a) after the system has reached
equilibrium, (c) fluctuation width as a function of

spring constant, (d) fluctuation width as a function of
temperature.

of k = 1.35 × 10−6N/m, while the predicted value is
1.00× 10−6N/m.

We now introduce a new mathematical tool, a Monte
Carlo algorithm. The Langevine equation describes the
trajectory of a particle as it reaches equilibrium, but we
can use the Monte Carlo algorithm to study the equilib-
rium state of a particle in Brownian motion.

After reaching equilibrium with the Monte Carlo algo-
rithm, a less expensive computation, we measure a value
of T = 318.19K while the predicted value was 300K for
the case where we varied the spring constant, and mea-
sured a value of k = 1.23×10−6N/m while the predicted
value was 1.00 × 10−6N/m for the case where we varied
the temperature.

CONCLUSIONS

We have explored a spherical particle in a one-
dimensional fluid where the particle experiences an in-
ertial force, a spring force, a Brownian force and a drag
force, both due to the interaction with the surrounding
water molecules. We have shown that we can safely disre-
gard the inertial term and any change in the spring force
and are able to approximately predict the trajectory of
the particle using the Langevin equation. The results
obtained from the simulations’ measurements and the
predictions obtained from the theory suggest that even
though the Langevine provides more information regard-
ing the transition towards equilibrium, the Monte Carlo
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algorithm is computationally less expensive and predicts
more accurately the distinct parameters of the system,
such as the temperature and the spring constant, when
the system has already achieved the equilibrium phase.

The results obtained for both flexible polymers and
Brownian motion of particles in a one-dimensional
medium using mathematical and probabilistic methods
suggest that we can use our models to simulate and pre-

dict similar systems accurately, without having to syn-
thesize and observe real physical systems.
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