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For many deterministic systems we can exploit the laws of Physics to make an accurate estimation
of the system state. For example, we can determine the speed of a falling ball at a given moment if
we know the initial conditions and the time at which it was released. However, some systems that
are completely constrained to the laws of Physics, seem to be unpredictable. We call this systems
chaotic. Chaotic systems appear random because the intrinsic uncertainty of the measurement of
the initial conditions grows quickly, specifically as an exponential function. As time increases, the
uncertainty becomes large and predictions innacurate. Here, we explore the non-linear, damped,
driven pendulum, and explore the conditions under which the pendulum undergoes periodic, semi-
periodic, and chaotic motion. We prove resonance and hysteresis in the driven pendulum and give
several characterizations of motion that help us determine if a system is periodic or chaotic. Finally,
we produce a bifurcation plot, which allows us to observe the phase transition of a system that goes
back and forth, from periodic to chaotic.

INTRODUCTION

In the real world there exist many examples of deter-
ministic systems that follow very well known physical
laws, yet their motion seems to become impredictable
and random as time increases. These type of systems
are truly deterministic and follow the well known laws
of Physics, but whenever we predict the state of a sys-
tem at a given moment we have also to account for an
uncertainty. Moreover, in order to predict a system’s fu-
ture state, we need to have knowledge of the initial con-
ditions, which is done through some measurement. In
the real world, regardless of how accurately we measure
things there will exist a certain uncertainty in the mea-
surement. This initial uncertainity and the rate of change
of the uncertainty determine if our predictions at a later
time will be acceptable (within a certain uncertainty) or
if the predictions will be completely innacurate (making
the system seem to have a random behavior).

Deterministic systems that seem random are some-
times called chaotic, since they have deterministic
chaotic dynamics. The underlying reason why these sys-
tems seem chaotic is that the initial uncertainty inherited
with the measurement of the initial conditions growths
very fast, making the system appear random. Math-
ematically, on the one hand, for a non-chaotic system
with some initial uncertainty ∆x0, the uncertainty will
grow linearly with time, allowing for reasonable predic-
tions. At a later time the uncertainty would become
∆x(t) = ∆x0λt. On the other hand, for a chaotic system
with some initial uncertainty ∆x0, the uncertainty grows
as

∆x(t) = ∆x0e
λt (1)

Systems whose initial uncertainty grows as defined by
Equation 1 are refered as unstable systems. We define

FIG. 1: Sinusoidally driven, damped, non-linear
pendulum

chaotic systems as deterministic systems whose uncer-
tainty of initial conditions grow exponentially with time.
In other words, chaos arises when a system is unstable
enough to present a ranodom-like nature due to its sen-
sitivity to initial conditions (Baker and Blackburn 2006).
In contrast with chaotic systems, a physical system can
also perform periodic or semi-periodic motion. For these
cases, the motion of the system is confined to a given
cycle, allowing us to predict the system’s state at a later
time. Simple Harmonic Oscillators undergo a periodic
motion, while semi-periodic motion systems simply un-
dergo more complex, yet closed cycles of motion.

We now explore the driven pendulum as an example
of a system that can be both chaotic and non-chaotic.
We explore the parameter space to find conditions un-
der which the pendulum has a periodic, semi-periodic, or
chaotic motion.



2

THE DRIVEN PENDULUM SYSTEM

In our experiments we use a sinusoidally driven,
damped, non-linear pendulum as presented in Figure 1.
The system consists of a mass attached to an axle (pen-
dulum) to which a slotted wheel and a magnet ring are
also attached. The pendulum, slotted wheel, and magnet
are free to rotate around the axle with minimal friction.
The slotted wheel moves in between an optical encoder,
and with the help of an LED light, the computer software
can determine the position of the pendulum and its rate
of change (the velocity). The magnet ring is an octopole
and it rotates near a static copper ring, generating Eddy
currents in the copper ring, which consequently generate
a damping torque on the axle’s motion. The distance of
the copper ring relative to the magnet can be varied with
a micrometer screw, effectively changing the magnitude
of the damping torque. Moreover, the magnet in addition
to the motor coils enable us to provide a know torque to
the axle.

THE DIMENSIONLESS EQUATION OF MOTION

For such a pendulum, the equation of motion becomes

I
d2θ

dt2
+ b

dθ

dt
+mgd sin θ = Υ cosωF t (2)

where I is the moment of inertia, b is the friction pa-
rameter, mgd is the gravitational restoring torque, and
Υ and ωF are the amplitude of the drive and angular
driving frequency, respectively. Now, aiming to reduce
the number of parameters we attempt to find an equa-
tion with only dimensionless parameters. We define the
dimensionless time as

τ = ω0t (3)

where the natural frequency of the system is

ω0 =
√
mgd/I (4)

This leads to a new equation of motion:

Iω0
d2θ

dτ2
+ bω0

dθ

dτ
+mgd sin θ = Υ cos

ωF
ω0
τ (5)

Dividing through by Iω2
0 , we get:

d2θ

dτ2
+

b

Iω0

dθ

dτ
+
mgd

Iω2
0

sin θ =
Υ

Iω2
0

cos
ωF
ω0
τ (6)

and since ω0 =
√
mgd/I we simplify and obtain

d2θ

dτ2
+

b

Iω0

dθ

dτ
+ sin θ =

Υ

Iω2
0

cos
ωF
ω0
τ (7)

We can then define three dimensionless parameters Q,
A, and ωD as

Q = ω0I/b (8)

A = Υ/(ω2
0I) (9)

ωD = ωF /ω0 (10)

where Q is the inverse of the force of the damping, A
is the strength of the forcing, and ωD is drive frequency
relative to the natural frequency. We can then derive the
dimensionless equation of motion as

d2θ

dτ2
+

1

Q

dθ

dτ
+ sin θ = A cosωDτ (11)

This equation, with the three dimensionless parame-
ters, will determine the dynamics of the pendulum. This
parameters will determine if a system is under periodic,
semi-periodic, or chaotic motion.

CALIBRATION OF THE PENDULUM

In our driven pendulum, we can vary the voltage ap-
plied to damp the pendulum, the relative distance of the
copper ring to the magnet, and the driving frequency
with we provide an extra torque to the axle. By vary-
ing them, we are efectively determining Q (the friction
parameter), A (the amplitude of the drive), and ωD (the
drive frequency relative to the natural frequency). How-
ever, in order to be able to modify these dimensionless
parameters we need to find the natural frequency of the
system, ω0, the damping of the system, b/I, and the nor-
malized torque being applied to the system.

DETERMINING THE NATURAL FREQUENCY

When we apply a torque T to the system via an exter-
nal motor, the equation of motion becomes,

I
d2θ

dt2
+ b

dθ

dt
+mgr sin θ = T (12)

In determining the natural frequency of the system we
first turn the motor off to provide zero torque, and set
the copper plate far enough from the magnet to avoid any
dapming force. Hence, the equation of motion becomes

I
d2θ

dt2
+mgr sin θ = 0 (13)



3

Furthermore, we know that sin θ ≈ θ for small angles,
and that the frequency of oscillations is determined by
ω0 =

√
mgr/I, which allows us to find analytically the

period of osccillation of a pendulum as

P = P0

[
2

π
K(k)

]
(14)

where P0 is the period in infinitesimally small oscil-
lations, k = sin θmax/2, and K(k) is the complete el-
liptic integral of the first kind. We can then displace
the pendulum and let it oscillate freely at small angles.
We calculate the period of oscillations as functions of the
maximum amplitude of oscillation. We can calculate the
elliptic integral and easily determine the value of P0. We
do so for several pairs of values of the period and max-
imum aplitude, determine P0 and find the average P0.
We find that

P0 ≈ 0.666 s (15)

and since the natural frequency is defined as ω0 =
2π/P0, we get that the natural frequency of our pen-
dulum is

ω0 ≈ 9.46 rad/s (16)

However, since we can modulate the driving frequency
in Hertz, we know by definition that F = ωF /2π, where
F is the dirving frequency (cycles/second). Moreover, we
can express F as F = 1

2πω0ωD. Using the value obtained
for ω0 ≈ 9.46, we have that

F ≈ 1.50ωD (17)

DETERMINING THE DAMPING OF THE
SYSTEM

The damping of the system will be modulated by the
parameter Q, which is in turn determined by the distance
of the copper ring relative to the magnet. In order to
determine Q, we need to somehow measure the amount
of damping as a function of the micrometer setting. Here,
we do not apply any voltage to the system and record the
motion of the pendulum oscillating at small angles for
the micrometer screw with settings 4mm through 11mm,
with a 1mm step. In this scenario, the equation of motion
becomes

I
d2θ

dt2
+ b

dθ

dt
+mgrθ = 0 (18)

FIG. 2: Damping of oscillations for 9mm micrometer
screw setting

FIG. 3: b/I as a function of the micrometer setting

for which we can find the general solution for the am-
plitude of the oscillations as a function of time as

θ = θ0e
−αt cosω1t (19)

where ω1 = ω2
0 − α2. Using this equation and the mo-

tion of the pendulum recorded for the different microme-
ter settings, we find α by fitting the data and extracting
the coefficient of the exponent.

The resulting fitting for a 9mm micrometer setting can
be observed in Figure 2, where α ≈ 0.5. Since b/I = 2α,
we can use all the resulting exponents (α) to plot b/I as
a function of the micrometer setting (Figure 3), which
can then be used to obtain Q for any of the settings.
The resulting plot of Q as a function of the copper plate
distance is shown in Figure 4.

DETERMINING THE NORMALIZED TORQUE

So far we have determined the natural frequency of
the system and the damping of the system as a function
of the micrometer screw setting. Now we find the re-
lationship between the voltage that is being applied to
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FIG. 4: Q as a function of the micrometer setting

the system and the effective torque being created on the
axle. In order to do so, we position the pendulum on its
side, such that the pendulum moves in a horizontal plane
and neglecting any effect from gravity. The equation of
motion becomes

I
d2θ

dt2
+ b

dθ

dt
= T (20)

We will then apply a series of voltages to the pendu-
lum and let the pendulum reach equilibrium. When a

terminal velocity is reached, the d2θ
dt2 becomes zero, and

the equation of motion becomes

T = b
[dθ
dt

]
term

(21)

where T is a constant applied torque. Using the defi-
nition from equation 9, we find that

A =
T

ω2
0I

=
1

ω2
0

b

I

[dθ
dt

]
term

(22)

where the values of ω0 and b/I have already been deter-
mined. From Figure 5, we can observe the linear depen-
dency of the terminal velocity with respect to the applied
voltage and model is as ωterminal = αV , where ωterminal
is the terminal velocity, α is the constant of proportion-
ality, and V is the voltage being applied. From the data,
we find α ≈ 8.50, resulting in the last dimensionless pa-
rameter,

A =
1

ω2
0

b

I
αV (23)

where all the coefficients in the right side of the equa-
tion are known.

FIG. 5: Terminal velocity of pendulum as a function of
applied voltage

FIG. 6: Resonance curves for varying driving frequency
and Q = 2, 4, 6

PROVING RESONANCE

Now that we have obtained the dimensionless equation
of motion and the necessary calibration to tune the three
dimensionless parameters, hence changing the dynamics
of the system, we focus on exploring the parameter space
to first demonstrate two important phenomena present in
a driven pendulum, resonance and hysteresis, and then
explore different characterizations of the dynamics of a
driven pendulum.

In order to demonstrate resonance in the driven pen-
dulum, we will observe the motion of the pendulum while
oscillating at small amplitudes. We reduce the applied
voltage until we obtain small oscillations and the pen-
dulum becomes effectively a simple harmonic oscillator
(SHO). This guarantees that chaotic motion will no oc-
cur. In order to prove that the system will reach maxi-
mum oscillation amplitudes when the system is driven at
its natural frequency, we drive our pendulum from fre-
quencies far below the natural frequency ω0 to frequen-
cies far above it.

The amplitude of oscillation as a function of the driv-
ing frequency is then recorded and plotted. This proce-
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FIG. 7: Hysteresis in a driven pendulum present in the
plot of the velocity as a function of the applied torque

dure is repeated for three different micrometer screw set-
tings, such that the values of Q explored are 2, 4, and 6.
From Figure 6 we can clearly see that the system presents
maximum oscillations at F ≈ 1.5 Hz, which agrees with
F ≈ 1.50ω0, for the natural frequency ω0 ≈ 0.96 rad/s.

PROVING HYSTERESIS

Another important phenomenom that occurs in a
driven pendulum is hysteresis. Some physical charac-
teristics, such as the gravitational potential energy of
two objects, is solely determined by the current state
of the system – i.e. there exists only one possible value
for the gravitational potential energy between two ob-
jects that are separated by a distance x. However, some
systems, such as the driven pendulum present hystere-
sis, which means that the system’s phase depends of its
kinetic path.

In our experiment, we explore the velocity of the pen-
dulum for different values of the normalized torque. We
start with the pendulum being still. We then start in-
creasing the normalized torque in steps. At first we ob-
serve a slight increase in the pendulum’s angle. When the
pendulum reaches 90 degrees it has reached the critical
torque.

When we increase the torque by one more step, the
pendulum begins to oscillate, and the velocity of the pen-
dulum stops being zero. However, it is obvious that the
velocity is not constant all around. In our data, we mea-
sure the average velocity 〈dθ/dt〉 versus the normalized
torque T/T0. From Figure 7 we observe that the pendu-
lum remains static for increasing torque until a thresh-
old is reached (the critical torque) and then the pendulm
begins oscillating around the axle, resulting in a non-
zero average angular velocity. However, when the pendu-
lum has been set in motion, and we start decreasing the
torque slowly, we reach the critcal torque and the pen-

FIG. 8: Time series of a periodic motion (Q = 2,
A = 1.5, ωD = 0.5)

dulum remains in motion. As we continue to decrease
the torque, the pendulum still has a non-zero average
angular velocity. This rupture between static and oscil-
lating pendulums at equal applied torques is the proof of
the prescense of hysteresis in a driven pendulum, where
the average velocity of the system depends on the kinetic
history of the system.

RELEVANCE OF RESONANCE AND
HYSTERESIS

Resonance and hysteresis are two interesting and use-
ful physical phenomena that are worthy of study on their
own. Here we have proven their presence in the driven
pendulum. However, in our study of periodic, semi-
periodic, and chaotic motion, resonance and hysteresis
also provides us with some intuition to think about the
problem. We observe an overlap of parameters, where in
the case of resonance we can have a certain maximum
amplitude of oscillation for several values of driving fre-
quency and value Q. In the case of hysteresis, we observe
that the system’s state is not uniquely determined by a
set of parameters, but it is also dependent on the sys-
tems’ past. This properties of the driven pendulum lead
to complex dynamics. We now explore different ways to
characterize this complex dynamics.

CHARACTERIZATION OF MOTION

Our goal consists of finding different characterizations
that help us find and understand under which sets of
parameters the system goes periodic, semi-periodic, or
complex motion. We now observe the pendulum under
four different sets of values for the dimensionless param-
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FIG. 9: Time series of a periodic motion (Q = 4,
A = 1.5, ωD = 1.0)

FIG. 10: Time series of a periodic motion (Q = 2,
A = 1.63, ωD = 0.9)

FIG. 11: Time series of a chaotic motion (Q = 4,
A = 1.5, ωD = 0.66)

FIG. 12: Phase plot of a periodic motion (Q = 2,
A = 1.5, ωD = 0.5)

eters: Q = 2, A = 1.5, ωD = 0.5, Q = 4, A = 1.5,
ωD = 1.0, Q = 2, A = 1.63, ωD = 0.9, Q = 4, A = 1.5,
ωD = 0.66. The simplest way to approach this problem
is through a time series. We can plot an observable as a
function of time, and identify if the observable changes
periodically – i.e. if the observable as a function of time
follows a pattern.

From Figures 8 through 11, we can observe the results
of measuring the velocity as a function of time, θ̇(t). In
Figures 8, 9, and 10, we observe a clear pattern in the
time series indicating non-chaotic motion. However, it
is clear from Figure 11 that the the velocity of the pen-
dulm appears to change in a probabilistic-like fashion,
indicating a chaotic system.

Perhaps an easier way of determining if a system is
periodic, semi-periodic, or chaotic is looking at the phase
plot where we plot θ̇(θ). In this plots we collect data for
the pendulum’s position and the pendulum’s velocity for
a given period of time.

The phase plots can be seen in Figures 12 through 15.
Here we can appreciate the periodicity of the pendulum’s
motion (if any). The first observation is that Figures
12, 13, and 14 are constrained to a specific path, but
Figure 15 never reaches the initial position, as expected
for chaotic motion.

However, we can also diffentiate between peiodic and
semi-periodic motion. In Figure 12 we can see that there
exists a unique cycle – the path does not intersect itself
at any point. In Figures 13 and 14, however, there is a
point where the path intersects itself, indicating a semi-
periodic motion.

From the phase plots obtained, we see that at a certain
angular position the possible angular velocities are con-
tained within a finite set. This implies that regardless of
how long has the system been oscillating, at that angular
position the pendulum has a limited and unchanging set
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FIG. 13: Phase plot of a periodic motion (Q = 4,
A = 1.5, ωD = 1.0)

FIG. 14: Phase plot of a periodic motion (Q = 2,
A = 1.63, ωD = 0.9)

of angular velocities. In order to characterize the motion
of a driven pendulum, we use Poincare plots. Here, we
measure the position and velocity of the penulum con-
stantly. We take a measurement once every period.

The plots presented in Figures 16 through 19 show the
corresponding Poincare plots for the different motions.
It is clear that Figures 16, 17, and 18, have a periodic
motion since the plot shows that for every period (more
specifically every measurement taken) there will be only
one value for the velocity of the pendulum at the given
angular position. In the case where multi-periodic mo-
tion is present, we would have two or more dots in the
plot. In contrast, Figure 19 shows the Poincare plot for
a chaotic motion. Here we observe that for every angular
position there are many possible values for the angular
velocity.

Another useful characterization of the motion of a

FIG. 15: Phase plot of a chaotic motion (Q = 4,
A = 1.5, ωD = 0.66)

FIG. 16: Poincare plot of a periodic motion (Q = 2,
A = 1.5, ωD = 0.5)

driven pendulum is the Fourier transform. For a discrete
case, the Fourier transform can be expressed as

f(t) = a0 +

∞∑
n=1

an cos (2πnx/L) + bn sin (2πnx/L) (24)

where the coefficients an and bn store information
about the frequencies contained in f . In the continuous
case, this Fourier transform becomes

f(t) =

∫ ∞
−∞

A(ω)eiωtdω (25)

where
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FIG. 17: Poincare plot of a periodic motion (Q = 4,
A = 1.5, ωD = 1.0)

FIG. 18: Poincare plot of a periodic motion (Q = 2,
A = 1.63, ωD = 0.9)

FIG. 19: Poincare plot of a chaotic motion (Q = 4,
A = 1.5, ωD = 0.66)

FIG. 20: Fourier transform of a periodic motion (Q = 2,
A = 1.5, ωD = 0.5)

FIG. 21: Fourier transform of a periodic motion (Q = 4,
A = 1.5, ωD = 1.0)

A(ω) =

∫ ∞
−∞

f(t)e−iωtdt (26)

contains the information about the frequencies of os-
cillation. In Figures 20 through 23 we can see the fourier
transforms of the different pendulum motions. We can
observe that in the cases of periodic or semi-periodic mo-
tion, the periodicity of the system can be infered from the
pronounced peaks in the fourier transforms.

BIFURCATION PLOTS

We have shown several different ways in which the dy-
namics of the driven pendulum can be characterized. We
now show how can we exploit this characterizations in
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FIG. 22: Fourier transform of a periodic motion (Q = 2,
A = 1.63, ωD = 0.9)

FIG. 23: Fourier transform of a chaotic motion (Q = 4,
A = 1.5, ωD = 0.66)

order to determine under which conditions a driven pen-
dulum exhibits periodic motion and under which others
it exhibits chaotic motion, which is of great interest in
our study. Using the Poincare plot we can extract the set
of velocities that a specific system undergoes. We do so
by extracting the vertical component (angular velocity)
of all the data in the Poincare plot.

This is the basic idea of a bifurcation plot. Our dimen-
sionless equation of motion contains three dimensionless
parameters, which we can modify to determine the dy-
namics of the pendulum. We can hold two of these three
parameters constant and modify the third one in order
to see the phase transitions of the pendulum, going back
and forth from periodic to chaotic motion.

Figure 24 shows the system for Q = 4, A = 0.75
and varying driving frequency. We slowly increase the
driving frequency letting the pendulum reach an equilib-

FIG. 24: Experimental bifurcation diagram (Q = 4,
A = 0.75)

FIG. 25: Computational bifurcation diagram (Q = 4,
A = 0.75)

rium state. We then collect data to produce a Poincare
plot and extract all the vertical components (velocities)
from the plot. We then plot the set of velocities for the
given driving frequency. We repeat this process until we
have spanned the wanted range. The result (Figure 24)
show subsets of the parameter-space where the motion
is periodic (sections of the bifurcation plot where we see
connecting lines), and other subsets where the motion
is chaotic (sections where the velocities are spread over
most values of the angular velocity). Figure 25 show a
computer simulation where the transition between peri-
odic and chaotic becomes clearer, as the system does not
go through a period of stabilization. This plots represent
the mapping of the phase transitions between periodic
and chaotic behavior.
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CONCLUSIONS

We have seen that a non-linear, damped, driven pen-
dulum is a complex system that presents deterministic
behavior. However, we have shown that under certain
conditions (specific combinations of the dimensionless pa-
rameters) the inherited uncertainty of the initial condi-
tions grows exponentially, making the system unstable,
which then results in the motion of the pendulum to ap-
pear probabilistic-like. When we observe this unstability
we call the system chaotic. We have shown the presence
of resonance and hysteresis, and have have explored the
parameter space of the pendulum. Using the dimension-
less equation of motion, we can easily adjust the pendu-
lum to find periodic, semi-periodic, and chaotic motion.

We have shown how we can use different characteriza-
tions of the pendulum’s dynamics to identify chaotic and
non-chaotic systems. More importantly, we have gener-
ated a map that can be used to determine if the pendulum
will undergo chaotic motion or not (the bifurcation plot).
We present the results for a bifurcation plot for varying
driving frequency to emphasize the perks of such a char-
acterization of motion, but the study can be extended to
explore different sets of parameters.
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