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Magnetic materials can be found everywhere in our daily lives. However, we often think of
magnetic materials to be any material that has some magnetization, i.e. a magnet. What we
often do not consider is that magnetic materials can exist in two different phases, the ferromagnetic
phase and the paramagnetic phase. The ferromagnetic phase is a consequence of the alignment of
magnetic spins that generate a net magnetization, while the paramagnetic phase is a result of spins
being randomly oriented, resulting in a zero magnetization due to the random nature of the spin
configuration. Here we prove through computer simulations that the Ising model can be used to
show the existence of the two magnetic phases. We show that in the one-dimensional Ising model
there is no phase transition, while in the two-dimensional case there exists a transition around the
critical temperature of 2.4 J/kB .

FIG. 1: A system in a ferromagnetic phase (left) and a
system in a paramagnetic phase (right). The arrows

represent magnetic spins, where the green arrows
represent UP spins and the red arrows represent

DOWN spins.

INTRODUCTION

In nature there exist some materials that are sensitive
to external magnetic fields. These materials are called
magnetic materials. In this paper we focus on such ma-
terials and we explore the different physical phases that
the materials go through and the transition among such
phases when exposed to different sets of parameters, such
as external magnetic fields and temperature baths.

In the theory of magnetism, the magnetization of a sys-
tem is a measurement of its density of magnetic dipoles
that exist within the material (1). These magnetic
dipoles can be due to the the the electron movement in
atoms or the intrinsic magnetic spin of particles. Never-
theless, it is because of these magnetic dipoles that we
can observe magnetization of objects, which as conse-
quence exert magnetic forces.

We are interested in two different physical phases: the
paramagnetic and the ferromagnetic phase. Both phases
are illustrated in Figure 2. On the left we have a system
in a ferromagnetic phase, where there is a net magnetic
moment. On the left, however, we have a system in a
paramagnetic phase, where the net magnetic moment av-
erages to zero as a consequence of the random nature of
the system, since all spins are oriented randomly.

We are interested in the conditions under which the

FIG. 2: Energetic contributions of neighboring spins in
the Ising model of magnetization

system is ferromagnetic and under which other condi-
tions a system is paramagnetic. We will be exploring
the parameter space to identify phase transitions. We
will also explore systems with non-interacting magnetic
spins and will compare them with systems where mag-
netic spins experience short-range interactions.

We will be interested in determining the average energy
of the system and its magnetization as functions of the
applied magnetic field and the temperature of the system.

THE ISING MODEL

First we consider a system of non-interacting particles.
In the absence of an external magnetic field, the system’s
dipoles are oriented randomly. This results in an aver-
age zero magnetization of the system. However, when a
magnetic field is applied to the system the dipoles align
with the external field, resulting in a non-zero magneti-
zation. A system of non-interacting particles is intuitive.
We experience a phase transition from a paramagnetic to
a ferromagnetic phase when an external magnetic field is
applied.

However, a system where particles have short-range
interactions is not as intuitive and much more interest-
ing. In order to explore the system’s behavior we use the
Ising Model of Magnetism and computer simulations to
explore the system at equilibrium under different sets of
parameters.
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The Ising Model assumes all magnetic spins to be ei-
ther up or down, and we represent such orientations as +1
and -1 respectively. Due to the short-range nature of the
system, we consider only an interaction energy between
neighboring spins. If two spins are parallel to each other
we consider them to contribute -J , and if they are anti-
parallel to each other we consider them to contribure +J ,
where J comes as a quantum mechanical consequence of
identical particles, and is known as the exchange con-
stant. The Ising model then considers all the interactions
among particles as

E = −J
N∑

i∈nn(i)

sisj (1)

where s is the spin of a particle with its repsective value
of ±1. However, equation 1 is incomplete since we also
need to consider the magnetic field in the system. For
that we define a new field

~H =
1

µ0

~B − M

V
(2)

where ~B is the external magnetic field and M is the
induced magnetization in the system, which we also need
to take into account to determine the energy of the sys-
tem. The resulting equation represents the complete
Ising model.

E = −J
N∑

i∈nn(i)

sisj −H
N∑
i=1

si (3)

Equation 3 can then be used to calculate relevant phys-
ical quantities of a magnetic system with interacting par-
ticles.

QUANTITIES OF INTEREST

As we expressed before, we are interested in the en-
ergy of the system and the magnetization of the system
as functions of the magnetic field and the temperature
bath being applied. For these two quantities we can eas-
ily calculate their value if we know the spin of every mag-
netic moment. These quantities are discrete and can be
expressed as

E = −J
N∑

i∈nn(i)

sisj −H
N∑
i=1

si (4)

and

M =
dm

dv
=

1

N

N∑
i=1

si (5)

We are also interested in the rate of change of the sys-
tem’s energy as a function of the temperature (the heat
capacity) and the change in the magnetization as a con-
sequence of the external magnetic field (susceptibility).

The heat capacity (at a constant magnetic field) is de-
fined as

C =

(
dE

dT

)
B

(6)

which is not a discrete quantity. However, we can cal-
culate the heat capacity of a system by considering the
partition function.

Z =
∑

states s

e−βE(s) (7)

and use the fact that

1

Z

dZ

dβ
= −

∑
states s

E(s)e−βE(s) = −〈E〉 (8)

and

1

Z

d2Z

dβ2
= −

∑
states s

E2(s)e−βE(s) = 〈E2〉 (9)

to obtain

C =
1

kBT 2

(
〈E2〉 − 〈E〉2

)
(10)

In a similar fashion, we can use the partition function
to derive an expression for the susceptibility of the sys-
tem.

χ =
1

kBT

(
〈M2〉 − 〈M〉2

)
(11)

We can then use the spin configuration of the system
to calculate numerically the energy, magnetization, heat
capacity, and susceptibility of the system.

COMPUTATIONAL METHODS

In order to calculate energy, magnetization, heat ca-
pacity, and susceptibility of the system, we use a varia-
tion of the Monte Carlo algorithm that examines the sys-
tem at equilibrium and at a constant temperature bath
T . In our computer simulations we use a Metropolis al-
gorithm, which steps are:
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FIG. 3: Energy of the system as a function of Monte
Carlo Steps.

1. Choose the initial state of the system (lattice of
spins).

2. Loop at this step: choose a random spin and calcu-
late the potential energy change that would result
from flipping the spin. If ∆E < 0 we accept the
change, if not we accept the change with a proba-
bility of p = e−β∆E .

3. Compute averages of quantities of interest after the
system has reached equilibrium.

With such an algorithm is easy to compute the changes
in energy since we only need to check the new relation-
ships between the targeted spin and its neighbors.

Moreover, in order to make relevant measurements of
the system’s state at equilibrium we need to find a use-
ful criteria to determine whether a system has reached
equilibrium or not. For any particular lattice size we run
the simulation (the Metropolis algorithm) and measure
some observable at a constant temperature and a con-
stant magnetic field.

We then determine after how many Monte Carlo steps
(number of times we loop in the algorithm) the system
presents minimum fluctuation. It is at this point that we
consider the system to be at equilibrium. For a lattice
of 10 by 10 spins, equilibrium is reached after 1,000,000
Monte Carlo steps as seen in Figure 3 and Figure 4.

THE ONE-DIMENSIONAL CASE

We consider a magnetic system in one dimension and
in two dimensions and explore their dependency on tem-
perature and external magnetic field. For the one-
dimensional case, we consider an Ising chain that con-
sists of 100 interacting spins. We initialize the system by

FIG. 4: Magnetization of the system as a function of
Monte Carlo Steps.

FIG. 5: Dimensionless energy as a function of
dimensionless temperature.

setting every spin randomly to an up or down orientation
(+1 or -1). We then run the Metropolis algorithm until
the system has reached equilibrium and take measure-
ments of the system’s energy, magnetization, heat capac-
ity, and susceptibility. The results are shown in Figures
5 through 8.

We measure all the observables and plot in di-
mensionless units. We plot dimensionless energy per
spin E(T,B)/JN , dimensionless magnetization per spin
M(T,B)/µN , dimensionless specific heat C(T,B)/kB ,
and dimensionless susceptibility per spin χ(T,B)/µ2N ,
as functions of dimensionless temperature KBT/J and
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FIG. 6: Dimensionless magnetization as a function of
dimensionless temperature.

FIG. 7: Dimensionless heat capacity as a function of
dimensionless temperature.

dimensionless magnetic field Bµ/J .

FIG. 8: Dimensionless suscesibility as a function of
dimensionless temperature.

CONCLUSIONS

After running the simulation in one dimension and ob-
taining each observable for a variety of temperatures and
magnetic fields (while the system has reached equilib-
rium), we see that in the cases of the energy and the
magnetization of the system, the observables fluctuate
around a mean value. In the absence of an external field
the energy of the system is minimal and the magnetiza-
tion of system is small (around 12% of maximum possible
magnetization). It is important to realize that the data
represented in Figures 5 through 8 is zoomed in, but the
energy and the magnetization of the system do in fact
have minimal fluctuations around their mean value.

From the plotted data we conclude that there does
not exist a phase transition from the paramagnetic phase
(the starting phase) to the ferromagnetic phase. The
system’s energy diminishes when more and more domain
walls are created, making it favorable for the system to
stay in a paramagnetic phase. However, a more pure
paramagnetic phase could be achieved for larger chains
than a hundred spins.

THE TWO-DIMENSIONAL CASE

Now we examine the case of the two-dimensional Ising
model. We consider a lattice of 50 spins by 50 spins and
initialize the system randomly, by choosing each spin’s
value at random (either +1 or -1). After choosing our ini-
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FIG. 9: Dimensionless energy as a function of
dimensionless temperature for H = 0.

FIG. 10: Dimensionless magnetization as a function of
dimensionless temperature for H = 0.

tial state we can run the Metropolis algorithm until equi-
librium is reached and take measurements of the physi-
cal observables we are interested in. However, we need
to slightly modify the algorithm. Instead of considering
two neighboring spins (as in the one dimensional case)
we need to consider all eight surrounding spins when cal-
culating the change of energy resulting in a spin flip.

We consider two cases: the case where the magnetic
field is zero, H = 0, and the case where the magnetic
field is 1, H = 1.

We run the simulation for a range of dimensionless
temperatures 1.0 J/kB through 3.5 J/kB and calculate
all dimensionless observables for an equilibrated system.

The results for the simulation for the case where there
is not magnetic field applied are shown in Figures 9
through 12. And the results for the simulation for a sys-
tem with H = 1 are shown in Figures 13 through 16.

FIG. 11: Dimensionless heat capacity as a function of
dimensionless temperature for H = 0.

FIG. 12: Dimensionless susceptibility as a function of
dimensionless temperature for H = 0.

FIG. 13: Dimensionless energy as a function of
dimensionless temperature for H = 1.
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FIG. 14: Dimensionless magnetization as a function of
dimensionless temperature for H = 1.

FIG. 15: Dimensionless heat capacity as a function of
dimensionless temperature for H = 1.

FIG. 16: Dimensionless susceptibility as a function of
dimensionless temperature for H = 1.

In the case where the magnetic field is zero, H = 0,
we observe an abrupt transition from the ferromagnetic
phase to the paramagnetic phase. With zero magnetic
field, the aligment of the spins is due entrirely to the
short-range interactions of the spins. However, at a crit-
ical temperature of approximately 2.4 J/KB , the short-
range interactions stop being significant and the system
quickly enters a paramagnetic phase. In order to charac-
terize this transition, we can fit our observables to

O(T ) ∝

∣∣∣∣∣T − TCTC

∣∣∣∣∣
α

(12)

By doing the regression, we obtain a value of 0.38 for
the exponent characterizing the specific heat (with a pre-
dicted value of 0), and we obtain a value of 1.95 for the
exponent characterizing the susceptibility (with a pre-
dicted value of 1.75).

For the case where we have a non-zero magnetic field,
we can observe a transition between a ferromagnetic
phase and a paramagnetic phase. However, in this case
the transition is significantly smoother. At very low tem-
peratures the alignment is due to both the interparticle
interactions and the applied magnetic field. However, as
the temperature rises the short-range interactions stop
being so significant and the system starts to transition
into the paramagnetic phase. However, it is because of
the applied magnetic field that the spins can still algin
with each other even after the short-range effects have
stopped being significant. This results in a slower tran-
sition from one phase to the other.

CONCLUSIONS

We have shown that in the one-dimensional Ising
model there exists no transition between ferromagnetic
and paramagnetic phases. The system favors a param-
agnetic case even for very low temperatures where short-
range interactions become significant.

We have seen that in the two-dimensional case we ob-
serve an abrupt transition from the ferromagnetic phase
to the paramagnetic phase when there is no applied mag-
netic field. The short-range interactions that are respon-
sible for the ferromagnetic phase at low temperatures
stop being significant after the critical temperature of
2.4 J/kB . The transition is characterized by the expo-
nents extracted from equation 12 and the values for the
specific heat and the succesibility are close to the theo-
retical values. However, in order to obtain more accurate
values the simulations could be ran for larger lattices.

We have also seen that in the prescene of magnetic
fields, the transition between the ferromagnetic phase
and the paramagnetic phase exists, but it is slowed down
as a consequence of the external field being applied.
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